rmac/direct.c

2511 lines
47 KiB
C

//
// RMAC - Renamed Macro Assembler for all Atari computers
// DIRECT.C - Directive Handling
// Copyright (C) 199x Landon Dyer, 2011-2021 Reboot and Friends
// RMAC derived from MADMAC v1.07 Written by Landon Dyer, 1986
// Source utilised with the kind permission of Landon Dyer
//
#include "direct.h"
#include "6502.h"
#include "amode.h"
#include "dsp56k.h"
#include "error.h"
#include "expr.h"
#include "fltpoint.h"
#include "listing.h"
#include "mach.h"
#include "macro.h"
#include "mark.h"
#include "procln.h"
#include "riscasm.h"
#include "sect.h"
#include "symbol.h"
#include "token.h"
#define DEF_KW
#include "kwtab.h"
#define DEF_REG56
#define DECL_REG56
#include "56kregs.h"
#define DEF_REG68
#define DECL_REG68
#include "68kregs.h"
#define DEF_REGRISC
#define DECL_REGRISC
#include "riscregs.h"
TOKEN exprbuf[128]; // Expression buffer
SYM * symbolPtr[1000000]; // Symbol pointers table
static long unused; // For supressing 'write' warnings
char buffer[256]; // Scratch buffer for messages
int largestAlign[3] = { 2, 2, 2 }; // Largest alignment value seen per section
// Function prototypes
int d_unimpl(void);
int d_68000(void);
int d_68020(void);
int d_68030(void);
int d_68040(void);
int d_68060(void);
int d_68881(void);
int d_68882(void);
int d_56001(void);
int d_nofpu(void);
int d_bss(void);
int d_data(void);
int d_text(void);
int d_abs(void);
int d_comm(void);
int d_dc(WORD);
int d_ds(WORD);
int d_dsm(WORD);
int d_dcb(WORD);
int d_globl(void);
int d_gpu(void);
int d_dsp(void);
int d_assert(void);
int d_include(void);
int d_list(void);
int d_nlist(void);
int d_error(char *);
int d_warn(char *);
int d_org(void);
int d_init(WORD);
int d_cargs(void);
int d_undmac(void);
int d_regbank0(void);
int d_regbank1(void);
int d_incbin(void);
int d_noclear(void);
int d_equrundef(void);
int d_ccundef(void);
int d_print(void);
int d_gpumain(void);
int d_jpad(void);
int d_nojpad(void);
int d_fail(void);
int d_cstruct(void);
int d_prgflags(void);
int d_opt(void);
int d_dsp(void);
int d_objproc(void);
int d_align(void);
void SetLargestAlignment(int);
// Directive handler table
int (*dirtab[])() = {
d_org, // 0 org
d_even, // 1 even
d_6502, // 2 .6502
d_68000, // 3 .68000
d_bss, // 4 bss
d_data, // 5 data
d_text, // 6 text
d_abs, // 7 abs
d_comm, // 8 comm
(void *)d_init, // 9 init
d_cargs, // 10 cargs
(void *)d_goto, // 11 goto
(void *)d_dc, // 12 dc
(void *)d_ds, // 13 ds
d_undmac, // 14 undefmac
d_gpu, // 15 .gpu
d_dsp, // 16 .dsp
(void *)d_dcb, // 17 dcb
d_unimpl, // 18* set
d_unimpl, // 19* reg
d_unimpl, // 20 dump
d_incbin, // 21 .incbin //load
d_unimpl, // 22 disable
d_unimpl, // 23 enable
d_globl, // 24 globl
d_regbank0, // 25 .regbank0
d_regbank1, // 26 .regbank1
d_unimpl, // 27 xdef
d_assert, // 28 assert
d_unimpl, // 29* if
d_unimpl, // 30* endif
d_unimpl, // 31* endc
d_unimpl, // 32* iif
d_include, // 33 include
fpop, // 34 end
d_unimpl, // 35* macro
ExitMacro, // 36* exitm
d_unimpl, // 37* endm
d_list, // 38 list
d_nlist, // 39 nlist
d_long, // 40* rept
d_phrase, // 41* endr
d_dphrase, // 42 struct
d_qphrase, // 43 ends
d_title, // 44 title
d_subttl, // 45 subttl
eject, // 46 eject
d_error, // 47 error
d_warn, // 48 warn
d_noclear, // 49 .noclear
d_equrundef, // 50 .equrundef/.regundef
d_ccundef, // 51 .ccundef
d_print, // 52 .print
d_cstruct, // 53 .cstruct
d_jpad, // 54 .jpad (deprecated)
d_nojpad, // 55 .nojpad (deprecated)
d_gpumain, // 56 .gpumain (deprecated)
d_prgflags, // 57 .prgflags
d_68020, // 58 .68020
d_68030, // 59 .68030
d_68040, // 60 .68040
d_68060, // 61 .68060
d_68881, // 62 .68881
d_68882, // 63 .68882
d_56001, // 64 .56001
d_nofpu, // 65 nofpu
d_opt, // 66 .opt
d_objproc, // 67 .objproc
(void *)d_dsm, // 68 .dsm
d_align // 69 .align
};
//
// Set the largest alignment seen in the current section
//
void SetLargestAlignment(int size)
{
if ((scattr & TEXT) && (largestAlign[0] < size))
largestAlign[0] = size;
else if ((scattr & DATA) && (largestAlign[1] < size))
largestAlign[1] = size;
else if ((scattr & BSS) && (largestAlign[2] < size))
largestAlign[2] = size;
}
//
// .error - Abort compilation, printing an error message
//
int d_error(char *str)
{
if (*tok == EOL)
return error("error directive encountered - aborting assembling");
else
{
switch(*tok)
{
case STRING:
return error(string[tok[1]]);
break;
default:
return error("error directive encountered--aborting assembly");
}
}
}
//
// .warn - Just display a warning on screen
//
int d_warn(char *str)
{
if (*tok == EOL)
return warn("WARNING WARNING WARNING");
else
{
switch(*tok)
{
case STRING:
return warn(string[tok[1]]);
break;
default:
return warn("WARNING WARNING WARNING");
}
}
}
//
// .org - Set origin
//
int d_org(void)
{
uint64_t address;
if (!rgpu && !rdsp && !robjproc && !m6502 && !dsp56001 && !(obj_format == RAW))
return error(".org permitted only in GPU/DSP/OP, 56001, 6502 and 68k (with -fr switch) sections");
// M56K can leave the expression off the org for some reason :-/
// (It's because the expression is non-standard, and so we have to look at
// it in isolation)
if (!dsp56001 && (abs_expr(&address) == ERROR))
{
error("cannot determine org'd address");
return ERROR;
}
if (rgpu | rdsp | robjproc)
{
orgaddr = address;
orgactive = 1;
}
else if (m6502)
{
// 6502. We also kludge 'lsloc' so the listing generator doesn't try
// to spew out megabytes.
if (address > 0xFFFF)
return error(range_error);
if (sloc != currentorg[0])
{
currentorg[1] = sloc;
currentorg += 2;
}
currentorg[0] = address;
ch_size = 0;
lsloc = sloc = address;
chptr = scode->chptr + address;
orgaddr = address;
orgactive = 1;
}
else if (dsp56001)
{
// Only mark segments we actually wrote something
if (chptr != dsp_currentorg->start && dsp_written_data_in_current_org)
{
dsp_currentorg->end = chptr;
dsp_currentorg++;
}
// Maybe we switched from a non-DSP section (TEXT, DATA, etc) and
// scode isn't initialised yet. Not that it's going to be a valid
// scenario, but if we try it anyhow it's going to lead to a crash. So
// let's fudge a value of 0 and get on with it.
orgaddr = (scode != NULL ? sloc : 0);
SaveSection();
if (tok[1] != ':')
return error(syntax_error);
int sectionToSwitch = 0;
switch (tok[0])
{
case REG56_X:
dsp_currentorg->memtype = ORG_X;
sectionToSwitch = M56001X;
break;
case REG56_Y:
dsp_currentorg->memtype = ORG_Y;
sectionToSwitch = M56001Y;
break;
case REG56_P:
dsp_currentorg->memtype = ORG_P;
sectionToSwitch = M56001P;
break;
case REG56_L:
dsp_currentorg->memtype = ORG_L;
sectionToSwitch = M56001L;
break;
default:
return error("unknown type in ORG");
}
if ((obj_format == LOD) || (obj_format == P56))
SwitchSection(sectionToSwitch);
tok += 2;
chcheck(3); // Ensure we got a valid address to write
dsp_currentorg->chunk = scode; // Mark down which chunk this org starts from (will be needed when outputting)
if (*tok == EOL)
{
// Well, the user didn't specify an address at all so we'll have to
// use the last used address of that section (or 0 if there wasn't one)
address = orgaddr;
dsp_currentorg->start = chptr;
dsp_currentorg->orgadr = orgaddr;
}
else
{
if (abs_expr(&address) == ERROR)
{
error("cannot determine org'd address");
return ERROR;
}
dsp_currentorg->start = chptr;
dsp_currentorg->orgadr = (uint32_t)address;
sect[cursect].orgaddr = (uint32_t)address;
}
if (address > DSP_MAX_RAM)
{
return error(range_error);
}
dsp_written_data_in_current_org = 0;
// Copied from 6502 above: kludge `lsloc' so the listing generator
// doesn't try to spew out megabytes.
lsloc = sloc = (int32_t)address;
// N.B.: It seems that by enabling this, even though it works elsewhere, will cause symbols to royally fuck up. Will have to do some digging to figure out why.
// orgactive = 1;
}
else
{
// If we get here we assume it's 68k with RAW output, so this is allowed
if (orgactive)
{
return error("In 68k mode only one .org statement is allowed");
}
org68k_address = address;
org68k_active = 1;
}
ErrorIfNotAtEOL();
return 0;
}
//
// Print directive
//
int d_print(void)
{
char prntstr[LNSIZ]; // String for PRINT directive
char format[LNSIZ]; // Format for PRINT directive
int formatting = 0; // Formatting on/off
int wordlong = 0; // WORD = 0, LONG = 1
int outtype = 0; // 0:hex, 1:decimal, 2:unsigned
uint64_t eval; // Expression value
WORD eattr; // Expression attributes
SYM * esym; // External symbol involved in expr.
TOKEN r_expr[EXPRSIZE];
while (*tok != EOL)
{
switch (*tok)
{
case STRING:
sprintf(prntstr, "%s", string[tok[1]]);
printf("%s", prntstr);
if (list_fd)
unused = write(list_fd, prntstr, (LONG)strlen(prntstr));
tok += 2;
break;
case '/':
formatting = 1;
// "X" & "L" get tokenized now... :-/ Probably should look into preventing this kind of thing from happening (was added with DSP56K code)
// Note (ggn): This is now much less severe as it's localised for 56k only
if ((tok[1] != SYMBOL) && (tok[1] != REG56_L) && (tok[1] != REG56_X))
goto token_err;
if (tok[1] == REG56_L)
{
wordlong = 1;
tok += 2;
}
else if (tok[1] == REG56_X)
{
outtype = 0;
tok += 2;
}
else
{
strcpy(prntstr, string[tok[2]]);
switch (prntstr[0])
{
case 'l': case 'L': wordlong = 1; break;
case 'w': case 'W': wordlong = 0; break;
case 'x': case 'X': outtype = 0; break;
case 'd': case 'D': outtype = 1; break;
case 'u': case 'U': outtype = 2; break;
default:
error("unknown print format flag");
return ERROR;
}
tok += 3;
}
break;
case ',':
tok++;
break;
default:
if (expr(r_expr, &eval, &eattr, &esym) != OK)
goto token_err;
else
{
switch(outtype)
{
case 0: strcpy(format, "%X"); break;
case 1: strcpy(format, "%d" ); break;
case 2: strcpy(format, "%u" ); break;
}
if (wordlong)
sprintf(prntstr, format, eval);
else
sprintf(prntstr, format, eval & 0xFFFF);
printf("%s", prntstr);
if (list_fd)
unused = write(list_fd, prntstr, (LONG)strlen(prntstr));
formatting = 0;
wordlong = 0;
outtype = 0;
}
break;
}
}
printf("\n");
return 0;
token_err:
error("illegal print token [@ '%s']", prntstr);
return ERROR;
}
//
// Undefine an equated condition code
//
int d_ccundef(void)
{
SYM * ccname;
// Check that we are in a RISC section
if (!rgpu && !rdsp)
{
error(".ccundef must be defined in .gpu/.dsp section");
return ERROR;
}
if (*tok != SYMBOL)
{
error("syntax error; expected symbol");
return ERROR;
}
ccname = lookup(string[tok[1]], LABEL, 0);
// Make sure symbol is a valid ccdef
if (!ccname || !(ccname->sattre & EQUATEDCC))
{
error("invalid equated condition name specified");
return ERROR;
}
ccname->sattre |= UNDEF_CC;
return 0;
}
//
// Undefine an equated register
//
int d_equrundef(void)
{
SYM * regname;
// Check that we are in a RISC section
if (!rgpu && !rdsp)
return error(".equrundef/.regundef must be defined in .gpu/.dsp section");
while (*tok != EOL)
{
// Skip preceeding or seperating commas (if any)
if (*tok == ',')
tok++;
// Check we are dealing with a symbol
if (*tok != SYMBOL)
return error("syntax error; expected symbol");
// Lookup and undef if equated register
regname = lookup(string[tok[1]], LABEL, 0);
if (regname && (regname->sattre & EQUATEDREG))
{
// Reset the attributes of this symbol...
regname->sattr = 0;
regname->sattre &= ~EQUATEDREG;
regname->sattre |= UNDEF_EQUR;
}
// Skip over symbol token and address
tok += 2;
}
return 0;
}
//
// Do not allow use of the CLR.L opcode
//
int d_noclear(void)
{
warn("CLR.L opcode ignored...");
return 0;
}
//
// Include binary file (can add addition size & position params, comma separated)
//
int d_incbin(void)
{
int fd;
int bytes = 0;
uint64_t pos, size, bytesRead;
char buf1[256];
int i;
// Check to see if we're in BSS, and, if so, throw an error
if (scattr & SBSS)
{
error("cannot include binary file \"%s\" in BSS section", string[tok[1]]);
return ERROR;
}
if (*tok != STRING)
{
error("syntax error; file to include missing");
return ERROR;
}
// Attempt to open the include file in the current directory, then (if that
// failed) try list of include files passed in the enviroment string or by
// the "-i" option.
TOKEN filename = tok[1];
if ((fd = open(string[filename], _OPEN_INC)) < 0)
{
for(i=0; nthpath("RMACPATH", i, buf1)!=0; i++)
{
fd = strlen(buf1);
// Append path char if necessary
if (fd > 0 && buf1[fd - 1] != SLASHCHAR)
strcat(buf1, SLASHSTRING);
strcat(buf1, string[filename]);
if ((fd = open(buf1, _OPEN_INC)) >= 0)
goto allright;
}
return error("cannot open: \"%s\"", string[filename]);
}
allright:
tok += 2;
size = lseek(fd, 0L, SEEK_END);
pos = lseek(fd, 0L, SEEK_SET);
if (*tok != EOL)
{
// Parse size and position parameters
uint64_t requested_size = -1; // -1 means "not set" for these two
if (*tok++ != ',')
{
close(fd);
return error("expected comma after incbin filename");
}
if (*tok != EOL)
{
if (*tok != ',')
{
if (abs_expr(&requested_size) != OK)
{
close(fd);
return ERROR;
}
if ((int64_t)requested_size <= 0 || requested_size > size)
{
close(fd);
return error("invalid incbin size requested");
}
}
if (*tok != EOL)
{
if (*tok++ != ',')
{
close(fd);
return error("expected comma after size parameter");
}
if (*tok != EOL)
{
if (abs_expr(&pos) != OK)
{
close(fd);
return ERROR;
}
if ((int64_t)pos <= 0 || pos > size)
{
close(fd);
return error("invalid incbin position requested");
}
}
}
if (*tok != EOL)
{
close(fd);
return error("extra characters following incbin");
}
}
// Adjust size if the user didn't specify it via the parameter
if (requested_size == -1)
{
requested_size = size - pos;
}
// Are we going to read past the end of the file?
if (pos + requested_size > size)
{
close(fd);
return error("invalid combination of incbin position and size");
}
size = requested_size;
// All checks passed, let's seek to where the user requested, otherwise at file start
lseek(fd, pos, SEEK_SET);
}
chcheck(size);
DEBUG { printf("INCBIN: File '%s' is %li bytes.\n", string[filename], size); }
char * fileBuffer = (char *)malloc(size);
bytesRead = read(fd, fileBuffer, size);
if (bytesRead != size)
{
error("was only able to read %li bytes from binary file (%s, %li bytes)", bytesRead, string[filename], size);
return ERROR;
}
memcpy(chptr, fileBuffer, size);
chptr += size;
sloc += size;
ch_size += size;
if (orgactive)
orgaddr += size;
free(fileBuffer);
close(fd);
return 0;
}
//
// Set RISC register banks
//
int d_regbank0(void)
{
// Deprecated, it's not as if this did anything useful, ever
warn("regbank0 ignored");
return 0;
}
int d_regbank1(void)
{
// Deprecated, it's not as if this did anything useful, ever
warn("regbank1 ignored");
return 0;
}
//
// Helper function, to cut down on mistakes & typing
//
static inline void SkipBytes(unsigned bytesToSkip)
{
if (!bytesToSkip)
return;
if ((scattr & SBSS) == 0)
{
chcheck(bytesToSkip);
D_ZEROFILL(bytesToSkip);
}
else
{
sloc += bytesToSkip;
if (orgactive)
orgaddr += bytesToSkip;
}
}
//
// Adjust location to an EVEN value
//
int d_even(void)
{
if (m6502)
return error(in_6502mode);
unsigned skip = (rgpu || rdsp ? orgaddr : sloc) & 0x01;
if (skip)
{
if ((scattr & SBSS) == 0)
{
chcheck(1);
D_byte(0);
}
else
{
sloc++;
if (orgactive)
orgaddr++;
}
}
return 0;
}
//
// Adjust location to a LONG value
//
int d_long(void)
{
unsigned lower2Bits = (rgpu || rdsp ? orgaddr : sloc) & 0x03;
unsigned bytesToSkip = (0x04 - lower2Bits) & 0x03;
SkipBytes(bytesToSkip);
SetLargestAlignment(4);
return 0;
}
//
// Adjust location to a PHRASE value
//
// N.B.: We have to handle the GPU/DSP cases separately because you can embed
// RISC code in the middle of a regular 68K section. Also note that all
// of the alignment pseudo-ops will have to be fixed this way.
//
// This *must* behave differently when in a RISC section, as following sloc
// (instead of orgaddr) will fuck things up royally. Note that we do it this
// way because you can embed RISC code in a 68K section, and have the origin
// pointing to a different alignment in the RISC section than the 68K section.
//
int d_phrase(void)
{
unsigned lower3Bits = (rgpu || rdsp ? orgaddr : sloc) & 0x07;
unsigned bytesToSkip = (0x08 - lower3Bits) & 0x07;
SkipBytes(bytesToSkip);
SetLargestAlignment(8);
return 0;
}
//
// Adjust location to a DPHRASE value
//
int d_dphrase(void)
{
unsigned lower4Bits = (rgpu || rdsp ? orgaddr : sloc) & 0x0F;
unsigned bytesToSkip = (0x10 - lower4Bits) & 0x0F;
SkipBytes(bytesToSkip);
SetLargestAlignment(16);
return 0;
}
//
// Adjust location to a QPHRASE value
//
int d_qphrase(void)
{
unsigned lower5Bits = (rgpu || rdsp ? orgaddr : sloc) & 0x1F;
unsigned bytesToSkip = (0x20 - lower5Bits) & 0x1F;
SkipBytes(bytesToSkip);
SetLargestAlignment(32);
return 0;
}
//
// Adjust location to <alignment> bytes
//
int d_align(void)
{
unsigned bytesToSkip;
uint64_t eval;
if (abs_expr(&eval) != OK)
return 0;
if (eval < 2)
{
return error("Invalid .align value specified");
}
if (dsp56001)
{
bytesToSkip = eval - sloc % eval;
D_ZEROFILL(bytesToSkip*3);
return 0;
}
bytesToSkip = eval - (rgpu || rdsp ? orgaddr : sloc) % eval;
if ( bytesToSkip != eval )
{
if ((scattr & SBSS) == 0)
{
D_ZEROFILL(bytesToSkip);
}
else
{
sloc += bytesToSkip;
if (orgactive)
orgaddr += bytesToSkip;
}
}
return 0;
}
//
// Do auto-even. This must be called ONLY if 'sloc' is odd.
//
// This is made hairy because, if there was a label on the line, we also have
// to adjust its value. This won't work with more than one label on the line,
// which is OK since multiple labels are only allowed in AS68 kludge mode, and
// the C compiler is VERY paranoid and uses ".even" whenever it can
//
// N.B.: This probably needs the same fixes as above...
//
void auto_even(void)
{
if (cursect != M6502)
{
if (scattr & SBSS)
sloc++; // Bump BSS section
else
D_byte(0); // Deposit 0.b in non-BSS
if (lab_sym != NULL) // Bump label if we have to
lab_sym->svalue++;
}
}
//
// Unimplemened directive error
//
int d_unimpl(void)
{
return error("unimplemented directive");
}
//
// Return absolute (not TDB) and defined expression or return an error
//
int abs_expr(uint64_t * a_eval)
{
WORD eattr;
if (expr(exprbuf, a_eval, &eattr, NULL) < 0)
return ERROR;
if (!(eattr & DEFINED))
return error(undef_error);
if (eattr & TDB)
return error(rel_error);
return OK;
}
//
// Hand symbols in a symbol-list to a function (kind of like mapcar...)
//
int symlist(int(* func)())
{
const char * em = "symbol list syntax";
for(;;)
{
if (*tok != SYMBOL)
return error(em);
if ((*func)(string[tok[1]]) != OK)
break;
tok += 2;
if (*tok == EOL)
break;
if (*tok != ',')
return error(em);
tok++;
}
return 0;
}
//
// .include "filename"
//
int d_include(void)
{
int j;
int i;
char * fn;
char buf[128];
char buf1[128];
if (*tok == STRING) // Leave strings ALONE
fn = string[*++tok];
else if (*tok == SYMBOL) // Try to append ".s" to symbols
{
strcpy(buf, string[*++tok]);
fext(buf, ".s", 0);
fn = &buf[0];
}
else // Punt if no STRING or SYMBOL
return error("missing filename");
// Make sure the user didn't try anything like:
// .include equates.s
if (*++tok != EOL)
return error("extra stuff after filename--enclose it in quotes");
// Attempt to open the include file in the current directory, then (if that
// failed) try list of include files passed in the enviroment string or by
// the "-i" option.
if ((j = open(fn, 0)) < 0)
{
for(i=0; nthpath("RMACPATH", i, buf1)!=0; i++)
{
j = strlen(buf1);
// Append path char if necessary
if (j > 0 && buf1[j - 1] != SLASHCHAR)
strcat(buf1, SLASHSTRING);
strcat(buf1, fn);
if ((j = open(buf1, 0)) >= 0)
goto allright;
}
return error("cannot open: \"%s\"", fn);
}
allright:
include(j, fn);
return 0;
}
//
// .assert expression [, expression...]
//
int d_assert(void)
{
WORD eattr;
uint64_t eval;
for(; expr(exprbuf, &eval, &eattr, NULL)==OK; ++tok)
{
if (!(eattr & DEFINED))
return error("forward or undefined .assert");
if (!eval)
return error("assert failure");
if (*tok != ',')
break;
}
ErrorIfNotAtEOL();
return 0;
}
//
// .globl symbol [, symbol] <<<cannot make local symbols global>>>
//
int globl1(char * p)
{
SYM * sy;
if (*p == '.')
return error("cannot .globl local symbol");
if ((sy = lookup(p, LABEL, 0)) == NULL)
{
sy = NewSymbol(p, LABEL, 0);
sy->svalue = 0;
sy->sattr = GLOBAL;
//printf("glob1: Making global symbol: attr=%04X, eattr=%08X, %s\n", sy->sattr, sy->sattre, sy->sname);
}
else
sy->sattr |= GLOBAL;
return OK;
}
int d_globl(void)
{
if (m6502)
return error(in_6502mode);
symlist(globl1);
return 0;
}
//
// .prgflags expression
//
int d_prgflags(void)
{
uint64_t eval;
if (*tok == EOL)
return error("PRGFLAGS requires value");
else if (abs_expr(&eval) == OK)
{
PRGFLAGS = (uint32_t)eval;
return 0;
}
else
{
return error("PRGFLAGS requires value");
}
}
//
// .abs [expression]
//
int d_abs(void)
{
uint64_t eval;
if (m6502)
return error(in_6502mode);
SaveSection();
if (*tok == EOL)
eval = 0;
else if (abs_expr(&eval) != OK)
return 0;
SwitchSection(ABS);
sloc = (uint32_t)eval;
return 0;
}
//
// Switch segments
//
int d_text(void)
{
if (rgpu || rdsp)
return error("directive forbidden in gpu/dsp mode");
else if (m6502)
return error(in_6502mode);
if (cursect != TEXT)
{
SaveSection();
SwitchSection(TEXT);
}
return 0;
}
int d_data(void)
{
if (rgpu || rdsp)
return error("directive forbidden in gpu/dsp mode");
else if (m6502)
return error(in_6502mode);
if (cursect != DATA)
{
SaveSection();
SwitchSection(DATA);
}
return 0;
}
int d_bss(void)
{
if (rgpu || rdsp)
return error("directive forbidden in gpu/dsp mode");
else if (m6502)
return error(in_6502mode);
if (cursect != BSS)
{
SaveSection();
SwitchSection(BSS);
}
return 0;
}
//
// .ds[.size] expression
//
int d_ds(WORD siz)
{
DEBUG { printf("Directive: .ds.[size] = %u, sloc = $%X\n", siz, sloc); }
uint64_t eval;
WORD eattr;
if ((cursect & (M6502 | M56KPXYL)) == 0)
{
if ((siz != SIZB) && (sloc & 1)) // Automatic .even
auto_even();
}
if (expr(exprbuf, &eval, &eattr, NULL) < 0)
return ERROR;
// Check to see if the value being passed in is negative (who the hell does
// that?--nobody does; it's the code gremlins, or rum, what does it)
// N.B.: Since 'eval' is of type uint64_t, if it goes negative, it will
// have its high bit set.
if (eval & 0x8000000000000000)
return error("negative sizes not allowed in DS");
// In non-TDB section (BSS, ABS and M6502) just advance the location
// counter appropriately. In TDB sections, deposit (possibly large) chunks
// of zeroed memory....
if ((scattr & SBSS) || cursect == M6502)
{
listvalue((uint32_t)eval);
eval *= siz;
sloc += (uint32_t)eval;
if (cursect == M6502)
chptr += eval;
just_bss = 1; // No data deposited (8-bit CPU mode)
}
else if (cursect & M56KPXYL)
{
// Change segment instead of marking blanks.
// Only mark segments we actually wrote something
if (chptr != dsp_currentorg->start && dsp_written_data_in_current_org)
{
dsp_currentorg->end = chptr;
dsp_currentorg++;
dsp_currentorg->memtype = dsp_currentorg[-1].memtype;
}
listvalue((uint32_t)eval);
sloc += (uint32_t)eval;
// And now let's create a new segment
dsp_currentorg->start = chptr;
dsp_currentorg->chunk = scode; // Mark down which chunk this org starts from (will be needed when outputting)
sect[cursect].orgaddr = sloc;
dsp_currentorg->orgadr = sloc;
dsp_written_data_in_current_org = 0;
just_bss = 1; // No data deposited
}
else
{
dep_block(eval, siz, 0, (DEFINED | ABS), NULL);
}
ErrorIfNotAtEOL();
return OK;
}
//
// dsm[.siz] expression
// Define modulo storage
// Quoting the Motorola assembler manual:
// "The DSM directive reserves a block of memory the length of which in words is equal to
// the value of <expression>.If the runtime location counter is not zero, this directive first
// advances the runtime location counter to a base address that is a multiple of 2k, where
// 2k >= <expression>."
// The kicker of course is written a few sentences after:
// "<label>, if present, will be assigned the value of the runtime location counter after a valid
// base address has been established."
//
int d_dsm(WORD siz)
{
TOKEN * tok_current = tok; // Keep track of where tok was when we entered this procedure
uint64_t eval;
if (abs_expr(&eval) != OK)
return 0;
// Round up to the next highest power of 2
// Nicked from https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
eval--;
eval |= eval >> 1;
eval |= eval >> 2;
eval |= eval >> 4;
eval |= eval >> 8;
eval |= eval >> 16;
int units_to_skip;
units_to_skip = eval + 1 - sloc;
sloc += units_to_skip; // Bump up sloc - TODO: check if this goes over the RAM limits?
// If a label has been defined in the same line as dsm, its value also needs to be adjusted
if (label_defined)
{
SYM * label = lookup(label_defined, LABEL, 0);
label->svalue += units_to_skip;
}
tok = tok_current; // Rewind tok back to where it was
return d_ds(siz); // And let d_ds take over from here
}
//
// dc.b, dc.w / dc, dc.l, dc.i, dc.q, dc.d, dc.s, dc.x
//
int d_dc(WORD siz)
{
WORD eattr;
uint64_t eval;
uint8_t * p;
if ((scattr & SBSS) != 0)
return error("illegal initialization of section");
// Do an auto_even if it's not BYTE sized (hmm, should we be doing this???)
if ((cursect != M6502) && (cursect != M56001P) && (cursect != M56001X)
&& (cursect != M56001Y) && (cursect != M56001L)
&& (siz != SIZB) && (sloc & 1))
auto_even();
// Check to see if we're trying to set LONGS on a non 32-bit aligned
// address in a GPU or DSP section, in their local RAM
if ((siz == SIZL) && (orgaddr & 0x03)
&& ((rgpu && (orgaddr >= 0xF03000) && (orgaddr <= 0xF03FFFF))
|| (rdsp && (orgaddr >= 0xF1B000) && (orgaddr <= 0xF1CFFFF))))
warn("depositing LONGs on a non-long address in local RAM");
for(;; tok++)
{
// dc.b 'string' [,] ...
if (siz == SIZB && (*tok == STRING || *tok == STRINGA8) && (tok[2] == ',' || tok[2] == EOL))
{
uint32_t i = strlen(string[tok[1]]);
if ((challoc - ch_size) < i)
chcheck(i);
if (*tok == STRING)
{
for(p=string[tok[1]]; *p!=EOS; p++)
D_byte(*p);
}
else if (*tok == STRINGA8)
{
for(p=string[tok[1]]; *p!=EOS; p++)
D_byte(strtoa8[*p]);
}
else
{
error("String format not supported... yet");
}
tok += 2;
goto comma;
}
int movei = 0; // MOVEI flag for dc.i
if (*tok == DOTI)
{
movei = 1;
tok++;
siz = SIZL;
}
// dc.x <expression>
SYM * esym = 0;
if (expr(exprbuf, &eval, &eattr, &esym) != OK)
return 0;
uint16_t tdb = eattr & TDB;
uint16_t defined = eattr & DEFINED;
// N.B.: This is awful. This needs better handling, rather than just bodging something in that, while works, is basically an ugly wart on the assembler. !!! FIX !!!
if (dsp56001)
{
if (cursect != M56001L)
{
if (!defined)
{
AddFixup(FU_DSPIMM24 | FU_SEXT, sloc, exprbuf);
D_dsp(0);
}
else
{
if (eattr & FLOAT)
{
double fval = *(double *)&eval;
eval = DoubleToDSPFloat(fval);
}
else
{
if ((uint32_t)eval + 0x1000000 >= 0x2000000)
return error(range_error);
}
// Deposit DSP word (24-bit)
D_dsp(eval);
}
}
else
{
// In L: we deposit stuff to both X: and Y: instead
// We will be a bit lazy and require that there is a 2nd value
// in the same source line. (Motorola's assembler can parse
// 12-digit hex values, which we can't do at the moment) This
// of course requires to parse 2 values in one pass. If there
// isn't another value in this line, assume X: value is 0.
int secondword = 0;
uint32_t evaly;
l_parse_loop:
if (!defined)
{
AddFixup(FU_DSPIMM24 | FU_SEXT, sloc, exprbuf);
D_dsp(0);
}
else
{
if (eattr & FLOAT)
{
float fval = *(float *)&eval;
eval = DoubleToDSPFloat(fval);
}
else
{
if (eval + 0x1000000 >= 0x2000000)
return error(range_error);
}
// Parse 2nd value if we didn't do this yet
if (secondword == 0)
{
evaly = (uint32_t)eval;
secondword = 1;
if (*tok != ':')
{
// If we don't have a : then we're probably at EOL,
// which means the X: value will be 0
eval = 0;
ErrorIfNotAtEOL();
}
else
{
tok++; // Eat the comma;
if (expr(exprbuf, &eval, &eattr, NULL) != OK)
return 0;
defined = (WORD)(eattr & DEFINED);
goto l_parse_loop;
}
}
// Deposit DSP words (24-bit)
D_dsp(eval);
D_dsp(evaly);
sloc--; // We do write 2 DSP words but as far as L: space is concerned we actually advance our counter by one
}
}
goto comma;
}
switch (siz)
{
case SIZB:
if (!defined)
{
AddFixup(FU_BYTE | FU_SEXT, sloc, exprbuf);
D_byte(0);
}
else
{
if (tdb)
return error("non-absolute byte value");
if (eval + 0x100 >= 0x200)
return error("%s (value = $%X)", range_error, eval);
D_byte(eval);
}
break;
case SIZW:
case SIZN:
if (!defined)
{
AddFixup(FU_WORD | FU_SEXT, sloc, exprbuf);
D_word(0);
}
else
{
if (eval + 0x10000 >= 0x20000)
return error(range_error);
if (tdb)
MarkRelocatable(cursect, sloc, tdb, MWORD, NULL);
// Deposit 68000 or 6502 (byte-reversed) word
if (cursect != M6502)
D_word(eval)
else
D_rword(eval)
}
break;
case SIZL:
// Shamus: Why can't we do longs in 6502 mode?
if (m6502)
return error(in_6502mode);
if (!defined)
{
AddFixup(FU_LONG | (movei ? FU_MOVEI : 0), sloc, exprbuf);
D_long(0);
}
else
{
if (tdb)
MarkRelocatable(cursect, sloc, tdb, MLONG, NULL);
if (movei)
eval = WORDSWAP32(eval);
D_long(eval);
}
break;
case SIZQ:
// 64-bit size
if (m6502)
return error(in_6502mode);
// DEFINITELY NEED FIXUPS HERE!
if (!defined)
{
AddFixup(FU_QUAD, sloc, exprbuf);
eval = 0;
}
D_quad(eval);
break;
case SIZS:
// 32-bit float size
if (m6502)
return error(in_6502mode);
/* Seems to me that if something is undefined here, then that should be an error. Likewise for the D & X variants. */
if (!defined)
{
// AddFixup(FU_FLOATSING, sloc, exprbuf);
// D_long(0);
return error("labels not allowed in floating point expressions");
}
else
{
//Would this *ever* happen?
// if (tdb)
// MarkRelocatable(cursect, sloc, tdb, MSINGLE, NULL);
PTR ptr;
ptr.u64 = &eval;
uint32_t ieee754 = FloatToIEEE754((float)*ptr.dp);
D_long(ieee754);
}
break;
case SIZD:
// 64-bit double size
if (m6502)
return error(in_6502mode);
if (!defined)
{
// AddFixup(FU_FLOATDOUB, sloc, exprbuf);
// D_quad(0LL);
return error("labels not allowed in floating point expressions");
}
else
{
//Would this *ever* happen?
// if (tdb)
// MarkRelocatable(cursect, sloc, tdb, MDOUBLE, NULL);
PTR ptr;
ptr.u64 = &eval;
uint64_t ieee754 = DoubleToIEEE754(*ptr.dp);
D_quad(ieee754);
}
break;
case SIZX:
if (m6502)
return error(in_6502mode);
uint8_t extDbl[12];
memset(extDbl, 0, 12);
if (!defined)
{
// AddFixup(FU_FLOATEXT, sloc, exprbuf);
// D_extend(extDbl);
return error("labels not allowed in floating point expressions");
}
else
{
//Would this *ever* happen?
// if (tdb)
// MarkRelocatable(cursect, sloc, tdb, MEXTEND, NULL);
PTR ptr;
ptr.u64 = &eval;
DoubleToExtended(*ptr.dp, extDbl);
D_extend(extDbl);
}
break;
}
comma:
if (*tok != ',')
break;
}
ErrorIfNotAtEOL();
return 0;
}
//
// dcb[.siz] expr1,expr2 - Make 'expr1' copies of 'expr2'
//
int d_dcb(WORD siz)
{
uint64_t evalc, eval;
WORD eattr;
DEBUG { printf("dcb: section is %s%s%s (scattr=$%X)\n", (cursect & TEXT ? "TEXT" : ""), (cursect & DATA ? " DATA" : ""), (cursect & BSS ? "BSS" : ""), scattr); }
if ((scattr & SBSS) != 0)
return error("illegal initialization of section");
if (abs_expr(&evalc) != OK)
return 0;
if (*tok++ != ',')
return error("missing comma");
if (expr(exprbuf, &eval, &eattr, NULL) < 0)
return 0;
if (cursect != M6502 && (siz != SIZB) && (sloc & 1))
auto_even();
dep_block((uint32_t)evalc, siz, (uint32_t)eval, eattr, exprbuf);
return 0;
}
//
// Generalized initialization directive
//
// .init[.siz] [#count,] expression [.size] , ...
//
// The size suffix on the ".init" directive becomes the default size of the
// objects to deposit. If an item is preceeded with a sharp (immediate) sign
// and an expression, it specifies a repeat count. The value to be deposited
// may be followed by a size suffix, which overrides the default size.
//
int d_init(WORD def_siz)
{
uint64_t count;
uint64_t eval;
WORD eattr;
WORD siz;
if ((scattr & SBSS) != 0)
return error(".init not permitted in BSS or ABS");
if (rgpu || rdsp)
return error("directive forbidden in gpu/dsp mode");
for(;;)
{
// Get repeat count (defaults to 1)
if (*tok == '#')
{
tok++;
if (abs_expr(&count) != OK)
return 0;
if (*tok++ != ',')
return error(comma_error);
}
else
count = 1;
// Evaluate expression to deposit
if (expr(exprbuf, &eval, &eattr, NULL) < 0)
return 0;
switch (*tok++)
{ // Determine size of object to deposit
case DOTB: siz = SIZB; break;
case DOTW: siz = SIZB; break;
case DOTL: siz = SIZL; break;
default:
siz = def_siz;
tok--;
break;
}
dep_block((uint32_t)count, siz, (uint32_t)eval, eattr, exprbuf);
switch (*tok)
{
case EOL:
return 0;
case ',':
tok++;
continue;
default:
return error(comma_error);
}
}
}
//
// Deposit 'count' values of size 'siz' in the current (non-BSS) segment
//
int dep_block(uint32_t count, WORD siz, uint32_t eval, WORD eattr, TOKEN * exprbuf)
{
WORD tdb = eattr & TDB;
WORD defined = eattr & DEFINED;
while (count--)
{
if ((challoc - ch_size) < 4)
chcheck(4L);
switch(siz)
{
case SIZB:
if (!defined)
{
AddFixup(FU_BYTE | FU_SEXT, sloc, exprbuf);
D_byte(0);
}
else
{
if (tdb)
return error("non-absolute byte value");
if (eval + 0x100 >= 0x200)
return error(range_error);
D_byte(eval);
}
break;
case SIZW:
case SIZN:
if (!defined)
{
AddFixup(FU_WORD | FU_SEXT, sloc, exprbuf);
D_word(0);
}
else
{
if (tdb)
MarkRelocatable(cursect, sloc, tdb, MWORD, NULL);
if (eval + 0x10000 >= 0x20000)
return error(range_error);
// Deposit 68000 or 6502 (byte-reversed) word
if (cursect != M6502)
D_word(eval)
else
D_rword(eval)
}
break;
case SIZL:
if (m6502)
return error(in_6502mode);
if (!defined)
{
AddFixup(FU_LONG, sloc, exprbuf);
D_long(0);
}
else
{
if (tdb)
MarkRelocatable(cursect, sloc, tdb, MLONG, NULL);
D_long(eval);
}
break;
}
}
return 0;
}
//
// .comm symbol, size
//
int d_comm(void)
{
SYM * sym;
char * p;
uint64_t eval;
if (m6502)
return error(in_6502mode);
if (*tok != SYMBOL)
return error("missing symbol");
p = string[tok[1]];
tok += 2;
if (*p == '.') // Cannot .comm a local symbol
return error(locgl_error);
if ((sym = lookup(p, LABEL, 0)) == NULL)
sym = NewSymbol(p, LABEL, 0);
else
{
if (sym->sattr & DEFINED)
return error(".comm symbol already defined");
}
sym->sattr = GLOBAL | COMMON | BSS;
if (*tok++ != ',')
return error(comma_error);
if (abs_expr(&eval) != OK) // Parse size of common region
return 0;
sym->svalue = eval; // Install common symbol's size
ErrorIfNotAtEOL();
return 0;
}
//
// .list - Turn listing on
//
int d_list(void)
{
if (list_flag)
listing++;
return 0;
}
//
// .nlist - Turn listing off
//
int d_nlist(void)
{
if (list_flag)
listing--;
return 0;
}
//
// .68000 - Back to 68000 TEXT segment
//
int d_68000(void)
{
rgpu = rdsp = robjproc = dsp56001 = 0;
// Switching from gpu/dsp sections should reset any ORG'd Address
orgactive = 0;
orgwarning = 0;
SaveSection();
SwitchSection(TEXT);
activecpu = CPU_68000;
regbase = reg68base; // Update register DFA tables
regtab = reg68tab;
regcheck = reg68check;
regaccept = reg68accept;
return 0;
}
//
// .68020 - Back to 68000 TEXT segment and select 68020
//
int d_68020(void)
{
d_68000();
activecpu = CPU_68020;
return 0;
}
//
// .68030 - Back to 68000 TEXT segment and select 68030
//
int d_68030(void)
{
d_68000();
activecpu = CPU_68030;
return 0;
}
//
// .68040 - Back to 68000 TEXT segment and select 68040
//
int d_68040(void)
{
d_68000();
activecpu = CPU_68040;
activefpu = FPU_68040;
return 0;
}
//
// .68060 - Back to 68000 TEXT segment and select 68060
//
int d_68060(void)
{
d_68000();
activecpu = CPU_68060;
activefpu = FPU_68060;
return 0;
}
//
// .68881 - Back to 680x0 TEXT segment and select 68881 FPU
//
int d_68881(void)
{
activefpu = FPU_68881;
regbase = reg68base; // Update register DFA tables
regtab = reg68tab;
regcheck = reg68check;
regaccept = reg68accept;
return 0;
}
//
// .68882 - Back to 680x0 TEXT segment and select 68882 FPU
//
int d_68882(void)
{
activefpu = FPU_68882;
regbase = reg68base; // Update register DFA tables
regtab = reg68tab;
regcheck = reg68check;
regaccept = reg68accept;
return 0;
}
//
// nofpu - Deselect FPUs.
//
int d_nofpu(void)
{
activefpu = FPU_NONE;
return 0;
}
//
// .56001 - Switch to DSP56001 assembler
//
int d_56001(void)
{
dsp56001 = 1;
rgpu = rdsp = robjproc = 0;
SaveSection();
if ((obj_format == LOD) || (obj_format == P56))
SwitchSection(M56001P);
regbase = reg56base; // Update register DFA tables
regtab = reg56tab;
regcheck = reg56check;
regaccept = reg56accept;
used_architectures |= M56001P | M56001X | M56001Y | M56001L;
return 0;
}
//
// .gpu - Switch to GPU assembler
//
int d_gpu(void)
{
if ((cursect != TEXT) && (cursect != DATA))
{
error(".gpu can only be used in the TEXT or DATA segments");
return ERROR;
}
// If previous section was DSP or 68000 then we need to reset ORG'd Addresses
if (!rgpu)
{
orgactive = 0;
orgwarning = 0;
}
rgpu = 1; // Set GPU assembly
rdsp = 0; // Unset DSP assembly
robjproc = 0; // Unset OP assembly
dsp56001 = 0; // Unset 56001 assembly
regbase = regriscbase; // Update register DFA tables
regtab = regrisctab;
regcheck = regrisccheck;
regaccept = regriscaccept;
//used_architectures |= MGPU; // TODO: Should GPU/DSP have their own dedicated sections in the long run?
return 0;
}
//
// .dsp - Switch to DSP assembler
//
int d_dsp(void)
{
if ((cursect != TEXT) && (cursect != DATA))
{
error(".dsp can only be used in the TEXT or DATA segments");
return ERROR;
}
// If previous section was gpu or 68000 then we need to reset ORG'd Addresses
if (!rdsp)
{
orgactive = 0;
orgwarning = 0;
}
rdsp = 1; // Set DSP assembly
rgpu = 0; // Unset GPU assembly
robjproc = 0; // Unset OP assembly
dsp56001 = 0; // Unset 56001 assembly
regbase = regriscbase; // Update register DFA tables
regtab = regrisctab;
regcheck = regrisccheck;
regaccept = regriscaccept;
//used_architectures |= MDSP; // TODO: Should GPU/DSP have their own dedicated sections in the long run?
return 0;
}
//
// .cargs [#offset], symbol[.size], ...
//
// Lists of registers may also be mentioned; they just take up space. Good for
// "documentation" purposes:
//
// .cargs a6, .arg1, .arg2, .arg3...
//
// Symbols thus created are ABS and EQUATED.
//
int d_cargs(void)
{
uint64_t eval = 4; // Default to 4 if no offset specified (to account for
// return address)
WORD rlist;
SYM * symbol;
char * p;
int env;
int i;
if (rgpu || rdsp)
return error("directive forbidden in gpu/dsp mode");
if (*tok == '#')
{
tok++;
if (abs_expr(&eval) != OK)
return 0;
// Eat the comma, if it's there
if (*tok == ',')
tok++;
}
for(;;)
{
if (*tok == SYMBOL)
{
p = string[tok[1]];
// Set env to either local (dot prefixed) or global scope
env = (*p == '.' ? curenv : 0);
symbol = lookup(p, LABEL, env);
if (symbol == NULL)
{
symbol = NewSymbol(p, LABEL, env);
symbol->sattr = 0;
}
else if (symbol->sattr & DEFINED)
return error("multiply-defined label '%s'", p);
// Put symbol in "order of definition" list
AddToSymbolDeclarationList(symbol);
symbol->sattr |= (ABS | DEFINED | EQUATED);
symbol->svalue = eval;
tok += 2;
// What this does is eat any dot suffixes attached to a symbol. If
// it's a .L, it adds 4 to eval; if it's .W or .B, it adds 2. If
// there is no dot suffix, it assumes a size of 2.
switch ((int)*tok)
{
case DOTL:
eval += 2;
case DOTB:
case DOTW:
tok++;
}
eval += 2;
}
else if (*tok >= REG68_D0 && *tok <= REG68_A7)
{
if (reglist(&rlist) < 0)
return 0;
for(i=0; i<16; i++, rlist>>=1)
{
if (rlist & 1)
eval += 4;
}
}
else
{
switch ((int)*tok)
{
case REG68_USP:
case REG68_SSP:
case REG68_PC:
eval += 2;
// FALLTHROUGH
case REG68_SR:
case REG68_CCR:
eval += 2;
tok++;
break;
case EOL:
return 0;
default:
return error(".cargs syntax");
}
}
// Eat commas in between each argument, if they exist
if (*tok == ',')
tok++;
}
}
//
// .cstruct [#offset], symbol[.size], ...
//
// Lists of registers may also be mentioned; they just take up space. Good for
// "documentation" purposes:
//
// .cstruct a6, .arg1, .arg2, .arg3...
//
// Symbols thus created are ABS and EQUATED. Note that this is for
// compatibility with VBCC and the Remover's library. Thanks to GroovyBee for
// the suggestion.
//
int d_cstruct(void)
{
uint64_t eval = 0; // Default, if no offset specified, is zero
WORD rlist;
SYM * symbol;
char * symbolName;
int env;
int i;
if (rgpu || rdsp)
return error("directive forbidden in gpu/dsp mode");
if (*tok == '#')
{
tok++;
if (abs_expr(&eval) != OK)
return 0;
// Eat the comma, if it's there
if (*tok == ',')
tok++;
}
for(;;)
{
if (*tok == SYMBOL)
{
symbolName = string[tok[1]];
// Set env to either local (dot prefixed) or global scope
env = (symbolName[0] == '.' ? curenv : 0);
symbol = lookup(symbolName, LABEL, env);
// If the symbol wasn't found, then define it. Otherwise, throw an
// error.
if (symbol == NULL)
{
symbol = NewSymbol(symbolName, LABEL, env);
symbol->sattr = 0;
}
else if (symbol->sattr & DEFINED)
return error("multiply-defined label '%s'", symbolName);
// Put symbol in "order of definition" list
AddToSymbolDeclarationList(symbol);
tok += 2;
// Adjust label start address if it's a word or a long, as a byte
// label might have left us on an odd address.
switch ((int)*tok)
{
case DOTW:
case DOTL:
eval += eval & 0x01;
}
symbol->sattr |= (ABS | DEFINED | EQUATED);
symbol->svalue = eval;
// Check for dot suffixes and adjust space accordingly (longs and
// words on an odd boundary get bumped to the next word aligned
// address). If no suffix, then throw an error.
switch ((int)*tok)
{
case DOTL:
eval += 4;
break;
case DOTW:
eval += 2;
break;
case DOTB:
eval += 1;
break;
default:
return error("Symbol missing dot suffix in .cstruct construct");
}
tok++;
}
else if (*tok >= REG68_D0 && *tok <= REG68_A7)
{
if (reglist(&rlist) < 0)
return 0;
for(i=0; i<16; i++, rlist>>=1)
{
if (rlist & 1)
eval += 4;
}
}
else
{
switch ((int)*tok)
{
case REG68_USP:
case REG68_SSP:
case REG68_PC:
eval += 2;
// FALLTHROUGH
case REG68_SR:
case REG68_CCR:
eval += 2;
tok++;
break;
case EOL:
return 0;
default:
return error(".cstruct syntax");
}
}
// Eat commas in between each argument, if they exist
if (*tok == ',')
tok++;
}
}
//
// Define start of OP object list (allows the use of ORG)
//
int d_objproc(void)
{
if ((cursect != TEXT) && (cursect != DATA))
{
error(".objproc can only be used in the TEXT or DATA segments");
return ERROR;
}
// If previous section was DSP or 68000 then we need to reset ORG'd
// Addresses
if (!robjproc)
{
orgactive = 0;
orgwarning = 0;
}
robjproc = 1; // Set OP assembly
rgpu = 0; // Unset GPU assembly
rdsp = 0; // Unset DSP assembly
dsp56001 = 0; // Unset 56001 assembly
//used_architectures |= MOP; // TODO: Should OP have its own dedicated section in the long run?
return OK;
}
//
// Undefine a macro - .undefmac macname [, macname...]
//
int undmac1(char * p)
{
SYM * symbol = lookup(p, MACRO, 0);
// If the macro symbol exists, cause it to disappear
if (symbol != NULL)
symbol->stype = (BYTE)SY_UNDEF;
return OK;
}
int d_undmac(void)
{
symlist(undmac1);
return 0;
}
int d_jpad(void)
{
warn("JPAD directive is deprecated/non-functional");
return OK;
}
int d_nojpad(void)
{
warn("NOJPAD directive is deprecated/non-functional");
return OK;
}
int d_gpumain(void)
{
return error("What the hell? Do you think we adhere to the Goof standard?");
}
//
// .opt - turn a specific (or all) optimisation on or off
//
int d_opt(void)
{
while (*tok != EOL)
{
if (*tok == STRING)
{
tok++;
char * tmpstr = string[*tok++];
if (ParseOptimization(tmpstr) != OK)
return error("unknown optimization flag '%s'", tmpstr);
}
else
return error(".opt directive needs every switch enclosed inside quotation marks");
}
return OK;
}
//
// .if, Start conditional assembly
//
int d_if(void)
{
WORD eattr;
uint64_t eval;
SYM * esym;
IFENT * rif = f_ifent;
// Alloc an IFENTRY
if (rif == NULL)
rif = (IFENT *)malloc(sizeof(IFENT));
else
f_ifent = rif->if_prev;
rif->if_prev = ifent;
ifent = rif;
if (!disabled)
{
if (expr(exprbuf, &eval, &eattr, &esym) != OK)
return 0;
if ((eattr & DEFINED) == 0)
return error(undef_error);
disabled = !eval;
}
rif->if_state = (WORD)disabled;
return 0;
}
//
// .else, Do alternate case for .if
//
int d_else(void)
{
IFENT * rif = ifent;
if (rif->if_prev == NULL)
return error("mismatched .else");
if (disabled)
disabled = rif->if_prev->if_state;
else
disabled = 1;
rif->if_state = (WORD)disabled;
return 0;
}
//
// .endif, End of conditional assembly block
// This is also called by fpop() to pop levels of IFENTs in case a macro or
// include file exits early with `exitm' or `end'.
//
int d_endif(void)
{
IFENT * rif = ifent;
if (rif->if_prev == NULL)
return error("mismatched .endif");
ifent = rif->if_prev;
disabled = rif->if_prev->if_state;
rif->if_prev = f_ifent;
f_ifent = rif;
return 0;
}